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Abstract 41
42

     The combined CloudSat and CALIPSO satellite observations provide the first 43

simultaneous measurements of cloud and precipitation vertical structure, and are used to 44

examine the representation of tropical clouds and precipitation in the Community 45

Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite 46

approach facilitates comparison of model simulations to observations, and a revised 47

clustering method is used to sort the subgrid-scale patterns of clouds and precipitation 48

into principal cloud regimes.  49

     Results from weather forecasts performed with CAM3 suggest that the model 50

underestimates the horizontal extent of low and mid-level clouds in subsidence regions, 51

but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates 52

the frequency of occurrence of the deep convection with heavy precipitation regime, but 53

underestimates the horizontal extent of clouds and precipitation at low and middle levels 54

when this regime occurs. This suggests that the model overestimates convective 55

precipitation and underestimates stratiform precipitation consistent with a previous study 56

that used only precipitation observations.  57

Tropical cloud regimes are also evaluated in a different version of the model, 58

CAM3.5, which uses a highly entraining plume in the parameterization of deep 59

convection. While the frequency of occurrence of the deep convection with heavy 60

precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds 61

with precipitation and congestus regimes increases. As a result, the parameterization 62

change does not reduce the frequency of precipitating convection that is far too high 63

relative to observations. For both versions of CAM, clouds and precipitation are overly 64
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reflective at the frequency of the CloudSat radar and thin clouds that could be detected by 65

the lidar only are underestimated.     66
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1. Introduction 67
68

     Although Global Climate Models (GCMs) are the primary tools to predict climate 69

change, large uncertainties remain in projections of future climate after more than 30 70

years of GCM development (Houghton et al., 2001; Randall et al., 2007). The different 71

representations of clouds and their feedback processes in GCMs have been identified as 72

the major source of differences in model climate sensitivities (Cess et al. 1990; Soden et 73

al. 2004; Zhang et al. 2005). These differences arise because contemporary GCMs cannot 74

resolve clouds and highly simplified parameterizations are used to represent the 75

interactions between clouds and radiation and the large-scale environment resolved by 76

GCMs. It has been pointed out that improved present-day cloud simulations are needed to 77

reduce the uncertainties in predicting future climate (Bony et al. 2006; Williams and 78

Tselioudis, 2007). Widely collected observations are required to assess model 79

performance and provide valuable information for the development of new 80

parameterizations. However, the evaluation of GCM cloud simulations has long been 81

hampered by the lack of suitable observations.  82

     Field programs with intensive observations are not sufficient to solve the 83

parameterization problem, because it is unlikely that a few cases will be representative 84

enough. Traditional methods to obtain global perspective, such as the International 85

Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer, 1999) and the Earth 86

Radiation Budget Experiment (ERBE; Wielicki et al. 1996) rely on radiances observed 87

by passive sensors on satellites. But because these radiances depend on the integrated 88

effect of properties of the whole atmospheric column, they provide little information of 89

the vertical structure of cloud fields. The lack of vertical structure information prevents 90

an understanding of the hydrologic cycle and the modulation by clouds of the vertical 91
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distribution of radiative heating rates; it also hinders the evaluation of GCM cloud 92

simulations. Launched in April 2006, the CloudSat and CALIPSO satellites, flying in the 93

A-Train constellation (Stephens et al. 2002), provide the first global survey of the vertical 94

distribution of cloud condensate and precipitation. The Cloud Profiling Radar (CPR) on 95

CloudSat (Im et al., 2006) is the first spaceborne millimeter-wavelength radar capable of 96

penetrating optically thick hydrometeor layers. The CALIPSO satellite carries a lidar 97

system (Winker et al., 2007) as its primary payload capable of detecting optically thin 98

clouds. The combined information from the two instruments is able to accurately 99

characterize the vertical as well as horizontal structure of hydrometeor layers (Mace et al. 100

2008). The only clouds missed by the combined dataset are low-level clouds with 101

reflectivity less than the detection threshold of the radar that are also beneath clouds 102

which completely attenuate the lidar pulse (Mace et al. 2008). 103

     In this study, CloudSat and CALIPSO data are used to evaluate simulations of 104

cloud and precipitation statistics from CAM3 (Collins et al. 2006), a major United States 105

climate model. Traditional methods of GCM evaluation use maps of large spatial and 106

temporal means of cloud variables from both models and observations. However, this 107

method cannot provide an effective constraint on cloud simulations and cannot assess 108

cloud radiative feedback due to compensating errors (Norris and Weaver, 2001; Williams 109

et al., 2005). Another popular method is to investigate relationships between clouds and 110

other atmospheric parameters using compositing techniques (Ringer and Allan, 2004). 111

Atmospheric parameters, such as 500-hPa vertical velocity, sea surface temperature, and 112

lower tropospheric stability (Bony et al., 2004; Williams et al. 2006), have been used in 113

order to document the relationships between clouds and the parameters that are thought to 114

affect their evolution. However, it is difficult to identify a small set of key atmospheric 115



6

parameters (Williams et al., 2003; Bony et al., 2004), and there is a lack of reliable data 116

for some atmospheric parameters. In this study, the cluster analysis method is used to 117

objectively identify cloud regimes based on cloud observations alone without any 118

knowledge of other meteorological parameters. By looking for distinctive cloud subgrid-119

scale patterns in ISCCP data, this method has been widely used to characterize cloud 120

regimes and evaluate model simulations in recent years (Jakob and Tselioudis, 2003; 121

Rossow et al., 2005; Gordon et al., 2005; Williams and Tselioudis, 2007; Chen and Del 122

Genio, 2008). The clustering method has also been used to evaluate precipitation regimes 123

from Tropical Rainfall Measurement Mission (TRMM) precipitation radar data 124

(Boccippio et al., 2005) and cloud regimes in CloudSat data (Zhang et al., 2007; hereafter 125

Zhang07), and to stratify TRMM latent-heating observations by ISCCP cloud regimes 126

(Jakob and Schumacher, 2008). More recently, Marchand et al. (2009) presented the 127

evaluation of modeled hydrometeor occurrence vertical profiles at the ARM Oklahoma 128

site by clustering the large-scale dynamic and thermodynamic fields. This is the first 129

study to use the cluster analysis method on the combined data from CloudSat and 130

CALIPSO to evaluate cloud and precipitation statistics of a climate model. 131

     Due to the important role of tropical cloud system in global atmospheric 132

circulation, our study will focus on the model simulations in tropical regions. The paper 133

is organized as follows. In the next section, observational data, model simulations, and 134

the cluster analysis method are briefly described. The simulator package that converts 135

model output to observed variables is introduced in section 3, and cloud regimes from 136

observational data are described in section 4. In section 5, model simulations are 137

evaluated within the clustering framework, and changes resulting from the addition of 138

new parameterizations to the CAM are shown. A summary is provided in section 6. 139
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140
2. Data and Methodology 141

2.1 Observations142

     The CloudSat and CALIPSO satellites are maintained in tight orbital configuration 143

to facilitate merging of data streams. The orbit is sun-synchronous with the overpass 144

occurring around 1:30 am/pm local time. The ground track repeats every 16 days, and the 145

orbital period is 99 minutes. The CPR on CloudSat is a 94-GHz nadir-pointing radar that 146

records range-resolved profiles of backscattered power with a nominal footprint of 1.4 147

km across by 2.5 km along track. Due to the sensitivity of the radar to large particles, the 148

CPR detects both clouds and precipitation. The estimated CPR minimum detectable 149

signal is -30 dBZ, and contamination by surface reflection in the lowest 500m of the 150

atmosphere renders the signal unusable for hydrometeor identification (Mace et al. 2007). 151

Due to these limitations, CloudSat will miss some fraction of thin cirrus, mid-level liquid 152

water clouds, and non-precipitating cumulus and stratocumulus clouds as well as all low-153

level clouds below 500m. 154

     The two-wavelength (1064 nm and 532 nm) polarization lidar on CALIPSO 155

provides high resolution vertical profiles of backscattered power from which clouds and 156

aerosols may be identified. The lidar system, which has higher horizontal and vertical 157

resolution than the CPR, has the capability to sense optically thin layers with optical 158

depths of 0.01 or less (Winker et al. 2007), and other clouds such as non-precipitating 159

stratocumulus whose reflectivity is below the detection threshold of the radar. On the 160

other hand, the lidar quickly attenuates beyond optical depths of about 3 and cannot 161

detect many clouds and precipitation identified by the radar (Zhang and Mace 2006; 162

Mace et al. 2009). The CPR and the CALIPSO lidar complement each other in their 163

capabilities to observe clouds. 164
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     In this study, two CloudSat standard data products are used to characterize cloud 165

vertical structures. The first is the Level 2 GEOPROF product (Mace 2004; Mace et al. 166

2007) which identifies the occurrence of hydrometeors with a masking algorithm and 167

provides the radar effective reflectivity factor, Ze, expressed in dBZ(=10log10Ze). The 168

masking algorithm is described in more detail by Marchand et al. (2008). The second is 169

the Level 2 GEOPROF-LIDAR product (Mace et al. 2008) which contains the estimates 170

of lidar-determined cloud fraction within CPR sample volumes. The lidar information is 171

from the CALIPSO Level 2 Vertical Feature Mask which reports the location of aerosol 172

and cloud types.  173

     In this study, tropical (23.5˚S � 23.5˚N) observations for the period June-174

September in 2006 are used. Although not shown here, data for the same months in 2007 175

confirm the robustness of the results. Following the approach in Zhang07, a sequence of 176

200 adjacent profiles of satellite data (approximately 2° of latitude) define an individual 177

cloud region from which joint histograms of atmospheric pressure and signal strength are 178

computed to characterize the subgrid-scale patterns of cloud and precipitation. The 179

histograms contain the relative frequency of occurrence (RFO) of clouds and 180

precipitation in categories of seven signal bins and seven pressure levels; a sample 181

histogram is shown in Figure 1. To construct the joint histograms, radar reflectivity above 182

-30 dBZ with CPR cloud mask greater than or equal to 20, which means clouds with low 183

chance of a false detection (Marchand et al., 2008), is binned into six categories with a 184

bin interval of 10 dBZ. A seventh bin at the left side of the diagram displays the RFO of 185

lidar detected clouds which are not detected by the radar because the reflectivity is less 186

than -30 dBZ, the minimum detectable signal of the radar. The reported RFO is the 187

percentage of observations within a given pressure bin that have the reported signal 188



9

strength. Thus, if all volumes within a given pressure range for a 2° region had cloud or 189

precipitation identified by either CloudSat or CALIPSO, then the sum of RFOs over all 7 190

signal bins in the given pressure range would be 100%. To facilitate comparison with 191

previous cluster studies using ISCCP data, the boundaries of the seven pressure bins 192

coincide with those used by ISCCP, and the conversion from altitude to pressure is 193

attained by use of analysis data provided by the European Center for Medium-range 194

Weather Forecasts (ECMWF) in the ECMWF-AUX product released with CloudSat and 195

CALIPSO data. The characteristic patterns of this joint histogram will be used in the 196

cluster analysis technique to determine tropical cloud regimes. While these 200-profile 197

snapshots are created sequentially, a sensitivity study, which uses another set of 198

snapshots collected by taking a 100-profile step forward compared with the original set, 199

shows that these 200-profile snapshots are able to independently represent the tropical 200

cloud regimes. 201

2.2 CAM3 and model integrations 202

     In this study, simulations of cloud and precipitation statistics of the Community 203

Atmospheric Model version 3.1 (Collins et al., 2006) are examined. The version of 204

CAM3.1 used in this study employs the finite volume dynamical core with horizontal 205

resolution of 1.9º latitude by 2.5º longitude and 26 vertical levels. CAM 3.1 treats 206

stratiform cloud microphysics based on the prognostic cloud water formulation of Rasch 207

and Kristjansson (1998) with modifications made by Zhang et al. (2003). There are two 208

parameterizations of moist convection in the model: a shallow depth mixing 209

parameterization (Hack 1993) and a deep convection parameterization (Zhang and 210

McFarlane, 1995) which convects whenever the convective available potential energy 211

exceeds a small threshold of 70 J/kg. 212
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     In addition to CAM3.1, a later version of the model, CAM3.5, will also be 213

evaluated. While there are numerous differences between the two versions, the key 214

difference lies in two modifications to the parameterization of deep convection. The first 215

modification is the inclusion of a parameterization of cumulus momentum transport 216

(Richter and Rasch, 2008). The second modification uses a highly entraining (as opposed 217

to undilute) plume to calculate available potential energy and prohibits convection when 218

there is no available potential energy for this entraining plume (Neale et al., 2008). As a 219

result, deep convection will be suppressed if the troposphere is dry even if the convective 220

available potential energy for an undilute plume exceeds 70 J/kg. 221

     Although CAM is a climate model, we examine simulations of CAM performed in 222

weather-forecast mode (Phillips et al., 2004) to better identify parameterization-related 223

deficiencies in the simulation of clouds and precipitation. With a weather-forecasting 224

approach, it is more likely that errors can be ascribed to the model parameterizations of 225

moist processes, because the large-scale atmospheric state in the early periods of a 226

forecast is relatively close to reality. In this study, a series of forecasts are performed 227

which commence every day in the time period from June to September 2006. Forecasts 228

are initialized from analyses of the National Center for Environmental Prediction (NCEP) 229

and we examine model data from day-2 forecasts. We analyze model output from this 230

forecast time-range because most of the fast-time scale spin-up issues are resolved by day 231

2 (Boyle et al. 2008). 232

     Considering the overpass time of the A-Train constellation, the model simulations 233

at 1 am and pm local time are compared to observations. Tests show that the geographical 234

distribution of the RFO of cloud regimes significantly changes if simulator output at 235

other times is used while the joint histograms of atmospheric pressure and signal strength 236
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are still similar to those from model output at 1 am and 1pm local time. This reminds the 237

reader that some of the geographical patterns shown below result from an incomplete 238

sampling of the diurnal cycle by CloudSat and CALIPSO (Liu et al., 2008). 239

2.3 Clustering method  240

     In this paper, the joint histograms of atmospheric pressure and signal strength are 241

used to characterize the vertical distributions of hydrometeors. In Zhang07, characteristic 242

patterns in these histograms of CloudSat data were identified using a K-means cluster 243

algorithm (Anderberg, 1973). The algorithm determined the patterns from a vector that 244

consisted of the 42 independent elements of the joint histogram. A drawback of this 245

method is that information on the distance in pressure or signal strength between 246

elements is not considered and thus results may be sensitive to the discretization of the 247

histogram (Williams and Webb, 2008). As an alternative, clustering is performed using a 248

7 element vector that equivalently illustrates the vertical profiles of signal strength. This 7 249

element vector which we call the normalized mean dBZ index is computed from the joint 250

histogram of cloud patterns in the following manner. As depicted in the upper abscissa of 251

Figure 1 (c), a dBZ index integer for each bin of signal strength is assigned. For example, 252

if the radar reflectivity dBZ is between -20 and -10, the dBZ index is 3. Likewise if the 253

hydrometeor is detected by the lidar only, the dBZ index is set to 1. The normalized mean 254

dBZ index at each of the 7 pressure levels is computed as the sum of RFOcld*dBZ_ind, 255

where RFOcld is the relative occurrence frequency of a certain dBZ range/lidar bin in all 256

the cloudy pixels at a given pressure level, and dBZ_ind is the dBZ index. If there are no 257

hydrometeors in a pressure level, then the normalized mean dBZ index is set to 0. In 258

Figure 1 (c), the line with diamonds shows the vertical profile of the normalized mean 259

dBZ index for this cloud pattern. 260
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     There are two major benefits to expressing the vertical structure of a hydrometeor 261

pattern in this way. First, the vertical profile of the normalized mean dBZ index describes 262

the dominant hydrometeor system in a region. This is because higher radar reflectivity 263

roughly corresponds to larger particle sizes and cloud water contents. Rain and drizzle is 264

indicated by dBZ larger than ~ -15 (Frisch et al., 1995; Stephens and Woods, 2007) 265

whereas liquid clouds without rain or drizzle will have dBZ less than -15 and often less 266

than -30, in which case only the lidar can detect the cloud. For ice, thin cirrus clouds 267

typically have dBZ of -50 to -20 dBZ, whereas larger ice particles exhibit dBZ larger than 268

-20. Second, the use of a normalized mean dBZ index facilitates the comparison of 269

observations with model simulations. This is because the model only predicts the grid-270

box mean cloud and precipitation condensate and thus assumptions would be necessary to 271

reproduce the spread of dBZ often observed in clouds. Although we could use 272

assumptions to generate the subgrid-scale variability in the simulator, the current version 273

of the simulator distributes the model’s cloud condensate and precipitation uniformly 274

among the subgrid-scale columns designated to have cloud or precipitation, with the 275

result that the histograms of signal strength are more narrow than is typically observed. A 276

negative consequence of using the normalized mean dBZ index is that cloud coverage, a 277

variable used in previous clustering analyses (Jakob 2003, Williams and Webb, 2008), is 278

unused. Note that while clustering is performed using the normalized mean dBZ index, 279

all results in this paper are displayed using the joint histogram of atmospheric pressure 280

and signal strength. 281

     The clustering method iteratively searches for a predefined number of clusters 282

starting with initial seeds. These seeds, used to create the initial cluster centroids, are 283

selected randomly from the dataset with the only restriction being low correlation 284
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between any two seeds. The cluster centroids represent specific patterns in the vertical 285

profile of the mean dBZ index. Every 2 degree CloudSat curtain is assigned to the cluster 286

whose centroid has the minimum Euclidian distance in the vertical profile of the mean 287

dBZ index. There are two ways to calculate the cluster centroids during the iterations. 288

One is to recalculate the centroids after all elements are assigned to a cluster, and the 289

other is to recalculate the cluster centroid each time an element is assigned to a cluster. 290

The latter way is used here because results depend less on the initial seeds chosen and the 291

algorithm converges faster. To simply test the sensitivity of clustering results to initial 292

seeds, the algorithm was repeated 30 times and a dominant set of cloud clusters is 293

obtained in at least 75% of tests. 294

     A limitation of the K-means algorithm is that the number of clusters needs to be 295

subjectively specified in advance. Here the number of clusters is determined following 296

the empirical criteria of Rossow et al. (2005). The correlation coefficients among the 297

vertical profiles of the normalized mean dBZ index of the centroids and the geographical 298

distributions of the frequency of occurrence of each cluster are used to judge the 299

outcome. If the correlation between any two resulting clusters in both the centroid and the 300

geographical distribution exceeds 0.7, the two clusters are designated as belonging to the 301

same principal cloud regime. Although we did not find it necessary in this study, other 302

studies have made subjective decisions to combine as a final step some of the resulting 303

clusters into a set of principal cloud regimes (Williams and Tselioudis 2007; Williams 304

and Webb 2008).   305

306
3. CFMIP observation simulator package (COSP) 307

308
     To facilitate a meaningful comparison of the model with CloudSat and CALIPSO 309

measurements, we use version 1.1 of a simulator package which has been developed 310
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through international collaborations under the framework of the Cloud Feedback Model 311

Intercomparison Project (CFMIP, http://cfmip.metoffice.com/COSP.html). To avoid 312

significant ambiguities in the direct comparison of model simulations with retrievals from 313

observations, the CFMIP Observation Simulator Package (COSP) converts model clouds 314

into pseudosatellite observations with a model to satellite approach that mimics the 315

satellite view of an atmospheric column with model-specified physical properties. The 316

approach accounts for observational limitations of the instruments as described below. 317

     COSP has three major parts: 1) the generation of a subgrid-scale distribution of 318

cloud and precipitation, 2) the simulation of radar and lidar signals from this distribution, 319

and 3) the computation of statistical summaries from the subgrid-scale distribution of 320

simulated signals which can then be compared to similar statistical summaries computed 321

from observations. In the first part, each GCM grid box is equally divided into a number 322

of vertical columns (50 in this case) and clouds are assigned to these columns in a manner 323

consistent with the model’s grid-box average stratiform and convective cloud amounts 324

and its cloud overlap assumption. The scheme which produces a subgrid distribution of 325

clouds is the Subgrid Cloud Overlap Profile Sampler (SCOPS) which is also used in the 326

ISCCP simulator (Klein and Jakob, 1999; Webb et al. 2001). Note that the grid-box mean 327

cloud condensate is divided equally among all columns that SCOPS designates as cloudy. 328

     The next step is to determine which of the columns generated by SCOPS contain 329

rain and snow. The scheme used is called SCOPS_PREC and is similar to that of 330

Chevallier and Bauer (2003) and O’Dell et al. (2007). The inputs to SCOPS_PREC 331

include the column distribution of large-scale and convective clouds from SCOPS and the 332

model’s grid-box mean precipitation flux of large-scale and convective rain and snow. 333

Note that this scheme currently ignores any parameterization of precipitation area 334
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fraction that some models have (Jakob and Klein, 2000). To allow a close match between 335

clouds allocated by SCOPS and precipitation produced by the clouds, precipitation is 336

assigned to columns with the following algorithm which starts at the top-of-atmosphere 337

and proceeds downward to the surface. There are in total five possibilities for the 338

assignment of precipitation to columns, and they are used with different priorities. First, 339

large-scale precipitation is assigned to all columns that either have stratiform clouds in 340

the current level (possibility one) or large-scale precipitation in the level above 341

(possibility two). These two possibilities account for the overwhelming majority of cases. 342

However, there may be rare instances where precipitation is not assigned after applying 343

these possibilities. For these rare instances, the following possibilities are applied. The 344

third possibility is to assign large-scale precipitation to all columns that have stratiform 345

clouds in the level below. If precipitation is not assigned with the third possibility, then 346

large-scale precipitation is assigned to all columns that have stratiform clouds anywhere 347

in the vertical column (possibility four). If after this possibility, precipitation is still not 348

assigned then it is assumed that large-scale precipitation covers 100% of the area and 349

every column is filled with precipitation (possibility five). Possibility five is only used in 350

the pathological case where the grid box has stratiform precipitation but no stratiform 351

clouds. The same method is used to assign convective precipitation to columns using the 352

convective clouds apportioned by SCOPS. The only difference is that convective 353

precipitation is assumed to cover 5% of the area in possibility five. Following this 354

assignment, the gridbox mean precipitation flux is, for lack of a better method, divided 355

equally among all of the columns assigned to have precipitation. Then, the local 356

precipitation flux is converted to a mixing ratio following Khairoutdinov and Randall 357
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(2003) who assume a Marshall-Palmer size distribution for precipitation and make a set 358

of assumptions for particle terminal velocity. 359

     In the second part of COSP, the radar and lidar signals are calculated using the 360

column distribution of cloud and precipitation. The QuickBeam code (Haynes et al., 361

2007) is used to simulate the radar signal and calculates the vertical profiles of radar 362

reflectivity accounting for attenuation of the radar beam from intervening hydrometeors, 363

the atmospheric profiles of temperature and humidity, and assumptions for the particle 364

size distributions of each hydrometeor. The ACTSIM code (Chiriaco et al. 2006; Chepfer 365

et al. 2007) is used to simulate the lidar signal and calculates the vertical profile of lidar 366

backscatter from the same set of modeling variables excluding precipitation 367

hydrometeors which contribute negligibly to the lidar backscatter. The simulated signals 368

are considered valid where cloud optical depth is lower than about 2.5 and saturated if 369

cloud optical depth exceeds this value. Aerosols are not currently included in the lidar 370

simulator. 371

     In the third part of COSP, statistical summaries are generated from these simulated 372

signals in a manner similar to that used to derive the hydrometeor mask from the 373

CloudSat and CALIPSO observations (Mace et al., 2009). In particular, we compute the 374

joint histogram of atmospheric pressure and signal strength taking into account the radar 375

sensitivity of -30 dBZ, surface contamination effects (Mace et al. 2007), and saturation of 376

lidar signals. When the lidar detects cloud using a threshold value of normalized 377

backscatter ratio of 3 and radar reflectivity is less than -30 dBZ, the occurrence frequency 378

will contribute to the first column of the histogram. Volumes with radar reflectivity less 379

than -30 dBZ that are beneath the level of complete attenuation of the lidar beam will be 380

considered as clear. In these ways, the cloud and precipitation fields from model 381
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simulations are diagnosed in a manner as close as possible as the diagnosis with real 382

observations.383

     While many sources of uncertainty can affect the output of COSP, two major 384

uncertainties arise from the assumed particle size distributions for different hydrometeors 385

and the methods used to generate subgrid-scale inhomogeneity in cloud condensate and 386

precipitation. For example, Bodas-Salcedo et al. (2008) examined the role of the shape of 387

the ice particle size distribution and found that the calculated radar reflectivity can 388

change by around 5 dBZ from increasing or decreasing the intercept of the assumed 389

exponential distribution by a factor of 5. Since the signal bin width we select is 10 dBZ, 390

an uncertainty of this magnitude will not significantly change our conclusions. Further 391

exploration of uncertainties can be made by using the different distribution models 392

available in the radar simulator. The applicability of homogenous horizontal distribution 393

of cloud condensate and precipitation in subgrid scale and the cloud and precipitation 394

overlap are two important issues for an accurately simulated signal. Zhang et al. (2005) 395

found little sensitivity of model biases in comparison with ISCCP observations to the 396

replacement of randomly overlapped horizontally homogenous clouds with exponentially 397

decaying overlapped horizontally inhomogeneous clouds following the method reported 398

on in Pincus et al. (2006). For COSP, the signals will also be sensitive to the assumption 399

that the entire cloud generates precipitation and that the precipitation area does not 400

decrease beneath the cloud unless all of the precipitation evaporates. Testing the 401

sensitivity of the simulated signals to these assumptions will require future work. In the 402

context of this study, we will partially address the possible bias caused by distribution 403

assumptions by artificially homogenizing the observations to GCM gridbox scale as a 404

sensitivity study (see section 5.1). 405
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     Figure 2 displays a sample comparison between simulator output from CAM3.1 406

day-2 forecasts and the observations. It shows the east-to-west distribution of clouds in 407

the tropics formed as an average over tropical latitudes for June through September 2006. 408

CAM3.1 is able to capture some aspects of clouds related to the large-scale circulation 409

such as the abundance of clouds in the Asian Monsoon (70E through the dateline) and the 410

predominance of low clouds to the west of South America (200˚E to 280˚E) and Africa 411

(320˚E to 360˚E). However, it is clear that the model has too frequent high clouds 412

particularly in the Asian Monsoon region. One interesting detail is that many CAM3.1 413

clouds have cloud water contents too small to be detected by either the radar or the lidar 414

(This is the so-called “empty cloud” problem where cloud fraction is non-zero but cloud 415

condensate is zero. These “empty clouds” are not included in the figure.). However, 416

because these figures display averages over large temporal and spatial scales, they cannot 417

indicate the exact disparities in cloud types between simulated and observed cloud 418

systems. More detailed comparison is required to investigate whether the model can 419

simulate specific clouds with the correct frequency in the right location. This motivates 420

the following analysis of cloud regimes.421

422
4. Clustering of tropical CloudSat and CALIPSO data 423

424
     The results of applying the clustering method to CloudSat and CALIPSO 425

observations are shown in Figures 3 and 4. These figures depict the cluster centroids in 426

terms of the joint histogram of atmospheric pressure and signal strength (Figure 3) and 427

the occurrence frequency maps of different cloud regimes (Figure 4). The different 428

locations of maximum RFO for different cloud regimes is indicative of the association of 429

cloud regimes with specific characteristics of the large-scale atmospheric circulation and 430

thermodynamic states (Del Genio and Kovari, 2002; Rossow et al. 2005). Table 1 431



19

displays the tropical average relative frequency of occurrence and total cloud cover for 432

each cloud regime. 433

     Six cloud regimes are able to describe the variations of tropical cloud systems. 434

Cloud regimes are given names based on the qualitative assessment of the joint 435

histograms of atmospheric pressure and signal strength for each cluster (Figure 3). The 436

first regime with an occurrence frequency of 35% (Table 1) is the most common cluster 437

of the six, and is named as low cloud with less precipitation. Most of the clouds are 438

detected by the lidar, and only a small fraction of clouds is detected by the radar. The 439

second regime is named low cloud with precipitation due to the greater fraction of dBZ 440

values in excess of -15, which is an approximate threshold that distinguishes cloud from 441

drizzle and rain (Frisch et al., 1995; Stephens and Wood, 2007). These two regimes are 442

found with concentrations in the large subsidence regions of the tropical oceans. The first 443

regime has the highest RFO at the west coasts of continents where marine stratocumulus 444

clouds are known to be prevalent (Klein and Hartmann 1993). The second regime 445

happens more frequently in regions where trade cumulus are predominant. Over higher 446

ocean temperatures than the first regime, the low clouds and precipitation extend deeper 447

with increased clouds and precipitation occurring in the 680 to 800 hPa bin. The third 448

regime is named thin cirrus and is characterized by clouds at high levels with low dBZ 449

and sometimes only detectable by the lidar. This regime is most common in the 450

Caribbean, the African Monsoon and the Asian Monsoon regions of India and South 451

Asia. The fourth regime consists of clouds and precipitation over a wide range of dBZ 452

below 440 hPa. This regime is suggestive of isolated convection that reaches the middle 453

troposphere and will be named cumulus congestus. It often occurs as an important regime 454

in the transition from shallow cumulus to deep convection. This regime is most common 455
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over the northwestern Pacific on the eastern edge of the Asian monsoon and with lesser 456

frequency over the Inter-Tropical Convergence Zones of the Atlantic and Pacific oceans 457

and the African and Asian monsoons. It also has a high RFO over the high topography of 458

the west coast of South America, east central Africa, and South Asia. The fifth regime is 459

named cirrus anvils and has a higher RFO at larger dBZ and occurs over a wider range of 460

pressure as compared to the thin cirrus regime. This cloud type is generally produced by 461

outflow from deep cumulus or synoptic and mesoscale disturbances (Sassen and Mace, 462

2002; Mace et al. 2006) and preferentially occurs over land areas in the monsoons of 463

Asia, Africa, and Central America. The sixth and last regime is named deep convection 464

with heavy precipitation. It occurs most frequently in the west Pacific warm pool and the 465

Asian Monsoon region (Zipser et al., 2006; Liu and Zipser, 2005). 466

     By comparing these cloud regimes to those determined from an analysis of only 467

CloudSat data (Figure 1 in Zhang07), the value of combining the radar and lidar data is 468

readily apparent. First, the increase relative to Zhang07 of cloud RFO in the highest 469

pressure level for most regimes illustrates the capability of the lidar to sense tenuous 470

cirrus whose radar reflectivity is less than the radar detection threshold. Second, a large 471

portion of non-drizzling cumulus or stratocumulus are detected only by lidar as indicated 472

prominently by the two low-cloud regimes. Third, the lidar is capable of detecting thin 473

mid-level liquid water clouds particularly in the thin cirrus, congestus, and cirrus anvil 474

regimes. As a result, the occurrence of clear sky decreases from 30% in Zhang07 to 8% 475

in this study (Table 1). Note that clear sky is defined as when fewer than 5% of adjacent 476

200 profiles of satellite data have cloud or precipitation; obviously this number is 477

dependent on the number of profiles in the samples. 478

479
5. Evaluation of CAM simulations 480
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481
5.1 CAM3.1482

     Model data can be either clustered independently or assigned into the observational 483

cluster with the minimum Euclidian distance between the modeled and observed 484

normalized dBZ index. However, if model data are clustered independently, a different 485

number of clusters may result (Williams and Tselioudis, 2007). In this case, both the joint 486

histograms and the geographic distributions may differ substantially from the 487

observations leading to an ambiguous evaluation of model deficiencies. To reduce 488

complexity, model simulations are assigned to the cluster centroids determined from 489

observations, and the joint histograms formed by averaging the modeled elements in each 490

cluster are shown in Figure 5 with their corresponding RFO geographic distributions in 491

Figure 6. Tropical averages of the RFO and total cloud cover for each model regime are 492

reported in Table 1. Projecting model simulations onto the observed clusters allows one 493

to compare a common set of regimes. 494

     Results indicate that the two modeled low level cloud regimes have much less 495

hydrometeor fraction than observed in their joint histograms of atmospheric pressure and 496

signal strength. In particular, the model strongly underestimates low level clouds that are 497

detectable only by the lidar. In contrast, the low cloud with less precipitation regime has 498

more precipitating cloud than observed, and the intensity of drizzle for the two low cloud 499

regimes is too high compared with observations, similar to results reported recently 500

elsewhere for other models (Bodas-Salcedo et al., 2008; O’Connor et al., 2009). At the 501

same time, the modeled RFO of the low cloud with less precipitation regime is more 502

frequent than observed in the oceanic subsidence regions, but too infrequent in ascent 503

regions. Compared with observations, the oceanic peaks of modeled RFO of the low 504

cloud with precipitation regime are shifted westward. For both the thin cirrus and cirrus 505
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anvil regimes, the model has a reasonable vertical profile of cloud fraction in the upper 506

troposphere, and low clouds overlapped by high clouds are simulated well in the model. 507

However, the simulated RFOs of the two cirrus regimes are much lower than those 508

observed over the Americas, the central Pacific Ocean, and the Asian monsoon region. 509

This may be because cirrus clouds cooccur with deep convection too often in the model. 510

While the model has a reasonable occurrence frequency of cumulus congestus except for 511

an underestimate over the tropical western Pacific, the model overestimates the 512

occurrence of radar reflectivity above 10 dBZ suggesting that the simulated mid-level 513

clouds precipitate too heavily. For the deep convection with heavy precipitation regime, 514

the model simulates an occurrence frequency of 33%, more than 2 times the observed 515

occurrence frequency of 13%. At the same time, the hydrometeor coverage is lower than 516

observed at levels beneath 440 hPa, particularly for the range from -10 to 20 dBZ. 517

Regardless of the regime, a very prominent problem evident from the joint histograms is 518

that the model strongly underestimates the occurrence of clouds with reflectivity less than 519

-10, particularly clouds which are only detectable by the lidar. A separate comparison 520

between the cloud optical thickness from model data and those derived from Moderate-521

Resolution Imaging Spectroradiometer (MODIS; Salomonson and Toll, 1991) 522

measurements also illustrates the modeled clouds are too optically thick (not shown). 523

These results indicate that the model clouds are too reflective, both at the frequency of 524

the CloudSat radar but probably also at visible wavelengths (Zhang et al., 2005). 525

     To investigate the effect of homogenous distribution of cloud condensate and 526

precipitation used in the simulator package, we create another set of the joint histograms 527

for the observed cloud regimes by replacing the radar reflectivity at each level by the 528

grid-box (200 profiles) mean reflectivity and then calculate the joint histograms from the 529
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means using the cluster number determined by the original joint histograms without grid-530

box averaging (not shown). The comparison between this recalculated set and the 531

simulations supports the conclusion that the model clouds are still too reflective for the 532

two low clouds and two cirrus regimes, and that the intensity of modeled precipitation for 533

the low clouds with precipitation and congestus regimes are too high. Note that this test 534

probably overestimates the impact of the homogeneity assumption, because the averaged 535

histograms mix the cloud and precipitation together, while the model has a separate 536

representation of cloud and precipitation. 537

     In order to explore the relationship of model parameterizations to the discrepancies 538

between models and observations, the simulator package is run for convective and 539

stratiform components of cloud systems separately and the resulting cloud patterns (not 540

shown) are constructed using the assigned cloud regimes determined from the simulator 541

output created from the complete cloud systems. For the low clouds with less 542

precipitation regime, most model clouds are stratiform, while those for the low clouds 543

with precipitation regime are both convective and stratiform but the mean convective 544

dBZ is larger than the stratiform dBZ which unsurprisingly indicates stronger 545

precipitation. The high clouds overlapped with low clouds are generated from stratiform 546

component. For the thin cirrus and anvil cloud regimes, model clouds are predominantly 547

stratiform, while the clouds of the cumulus congestus regime are characterized by intense 548

convective systems. The cloud coverage of the deep convection with heavy precipitation 549

regime results comparably from convective and stratiform systems. Unsurprisingly the 550

dBZ of the convective clouds and precipitation are greater than that of the stratiform 551

clouds and precipitation, and the modeled stratiform precipitation is less frequent beneath 552

800 hPa than above which is suggestive of precipitation evaporation in the lower 553
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troposphere. Considering that the model’s precipitation area is too low and that the 554

model’s RFO is far greater than observed for this regime, it suggests that the model 555

produces too much convective precipitation but too little stratiform precipitation. This 556

result would be consistent with that of Dai (2006) who found that this model (as well as 557

most conventional climate models) underestimate/overestimate the accumulated 558

stratiform/convective precipitation in the tropics based on TRMM observations. 559

5.2 CAM3.5 560

     Applying the same analysis approach to cloud simulations from CAM3.5 yields 561

joint histograms for the six regimes (Figure 7) that are similar to those from CAM3.1. 562

The most noticeable changes are that the cloud fraction at the highest pressure level is 563

lower than that from CAM3.1, and that the hydrometeor fractions at low levels increase, 564

particularly in the deep convection regime. However, the differences in the RFO and 565

spatial distributions are more significant (Figure 8 and Table 1). For example, the 566

occurrence frequency of deep convection and thin cirrus regimes decreases. In particular, 567

although the RFO of deep convection regime remains a factor of two too large, the 568

decrease in the total RFO of the three high cloud regimes (thin cirrus, cirrus anvil and 569

deep convection) from 39% to 31% corrects an overestimate of the observed occurrence 570

frequency of 30%. Additionally, the occurrence frequency of congestus increases from 571

6% to 13% leading to an overestimate of the observed occurrence frequency which is 9%. 572

At the same time, the occurrence frequency of low clouds with precipitation increases in 573

many oceanic regions. Also worthy of mention is that the total cloud coverage of all 574

regimes decreases when compared with that of CAM3.1  575

     It is tempting to attribute most of the changes in the regime occurrence frequencies 576

to the elimination of undilute plumes in the deep convection parameterization of 577
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CAM3.5. Indeed, this is confirmed by examination of a separate integration of CAM3.5 578

modified to permit undilute plumes according to the formulation that was used in 579

CAM3.1 (Table 1). Physically, dilute plumes have detrainment levels in the middle and 580

lower troposphere and the inclusion of the dilute plumes likely explains the increase in 581

the occurrence frequency of low clouds with precipitation and congestus, and the 582

decrease in the occurrence frequency of deep convection. Indeed, in the simulation of 583

CAM3.5 with undilute plumes, the occurrence frequency of low clouds with precipitation 584

decreases from 21% to 19% and the occurrence frequency of congestus decreases from 585

13% to 6%, confirming that the change in the dilution of convective plumes is 586

responsible for most of the increase of these regimes from CAM3.1 to CAM3.5. The 587

reduction in the occurrence frequency and total cloud coverage of thin cirrus that results 588

from dilute plumes (Table 1) may be the result of decreased condensate and water vapor 589

detrainment from deep convection in the upper troposphere. This interpretation is 590

consistent with the strong decrease in the occurrence frequency of the deep convection 591

with heavy precipitation regime in CAM3.5 (Table 1). 592

5.3 The association of cloud regimes with large-scale dynamics 593

To explore the coupling between cloud regimes and the large-scale dynamics that is 594

supportive of different cloud types, the occurrence frequency of cloud regimes from both 595

observations and model simulations over ocean are sorted by the value of monthly mean 596

vertical pressure velocity at 500 hPa (�500). Although cloud systems may be associated 597

with other large-scale parameters, such as sea surface temperature or lower tropospheric 598

stability (Klein and Hartmann, 1993; Weaver, 1999; Williams et al., 2003; Ringer and 599

Allan, 2004), we choose to examine �500 because of its recent widespread use in the 600

analysis of tropical clouds following the pioneering approach of Bony et al. (2004). 601
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NCEP vertical velocities are sorted into 8 bins such that the occurrence frequency of each 602

bin is equal. The compositing of observed cloud regimes into vertical velocity bins is 603

performed in two ways (Figure 9). In the first way, the fraction of elements of a given 604

regime which occur in a given vertical velocity bin is displayed in Figure 9a. If there 605

were no relationship between a cloud regime and �500, the occurrence frequency of a 606

regime in each velocity bin would be equal to 0.125 apart from random fluctuations. In 607

the second way, the fraction of elements in a given vertical velocity bin which belong to a 608

given regime is displayed in Figure 9b. In this way, the sum of the frequencies for the six 609

regimes in each velocity bin is 1. As expected, the two low cloud regimes are much more 610

common in subsidence regions and the remaining regimes are more common in ascent 611

regions. The association of cloud regimes with large-scale dynamics provides 612

quantitative targets for model simulations.  613

Figure 10 displays differences between observations and CAM3.1 and CAM3.5 614

simulations. Compared with observations (Figure 10a) CAM3.1 strongly overestimates 615

the occurrence frequency of deep convection with heavy precipitation in the three 616

dynamic regimes with the strongest upward motion. For example, in the strongest upward 617

motion bin, CAM3.1 simulates an occurrence frequency of 0.86 whereas the observed 618

occurrence frequency is only 0.35. As result, in the strongly ascending regimes the model 619

underestimates the occurrence frequency of all other cloud regimes. In the regimes with 620

moderate descending or ascending air motion, the model produces too many low clouds 621

with precipitation but too few low clouds with less precipitation.  622

The impact of the model changes between CAM3.1 and CAM3.5 on the frequency of 623

cloud regimes in different dynamical regimes is displayed in Figure 10c. The occurrence 624

frequency of congestus in each dynamic regime rises with stronger increases in the 625
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ascending regimes, while the occurrence frequency of thin cirrus slightly decreases in all 626

regimes. At the same time, the occurrence frequency of deep convection with heavy 627

precipitation decreases in the bins with upward motion although the reduction does not 628

cancel the model overestimate especially in the strongest upward motion bin. In many 629

regimes, the occurrence frequency of low clouds with precipitation increases. As a result 630

of these changes, the simulation of cloud regimes from CAM3.5 compares somewhat less 631

favorably to observations in their occurrence frequencies (Figure 10b). Although the 632

overestimate of deep convection is reduced in ascending regimes, it is replaced with 633

overestimates of congestus and low clouds with precipitation in weakly ascending and 634

descending regimes. In general this suggests that the occurrence of precipitating 635

convection remains distressingly high. A possible concern is that the observed occurrence 636

frequency of the deep convection regime may be underestimated because CloudSat only 637

collects a curtain of data instead of a wide area along the satellite flight track. While this 638

may partly contribute to the remarkable difference between the modeled and observed 639

RFO of the deep convection with heavy precipitation regime, the comparison of CAM3 640

with ground-based as well as satellite observations in some previous studies (Xie et al. 641

2004, Dai and Trenberth 2004) also suggests that the model greatly overestimates 642

precipitation frequency. 643

5.4 Comparison between CAM3’s forecasts and its climate 644

In order to examine the consistency between cloud regimes of CAM3’s climate and 645

its forecasts, data from ‘climate’ integrations of CAM3 using only observed sea-surface 646

temperatures and sea ice for June-September 2006 are analyzed following the method 647

used for the forecasts. The joint histograms of atmospheric pressure and signal strength of 648

the six regimes from the climate integrations are similar to those of the forecasts, but the 649
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RFO of the individual cloud regimes have several noticeable differences. In the climate 650

integrations of both CAM3.1 and CAM3.5, the low clouds with precipitation regime is 651

more common in the subsidence regions, and the congestus regime occurs more 652

frequently in ascending regimes. In contrast, the deep convection with heavy 653

precipitation regime is less frequent in the climate integrations than that from the 654

forecasts. These differences show that drifts in the large-scale atmospheric state lead to 655

drifts in the population of cloud regimes. 656

To show the relationship between cloud regimes and the 500 hPa pressure vertical 657

velocity, frequency differences similar to Figure 10 are created for the climate 658

integrations (Figure 11). Although the differences with observations are not the same, the 659

differences between CAM3.1 and CAM3.5 for almost all cloud regimes in climate 660

integrations are similar to those of the forecasts but with much smaller magnitude. For 661

example, low clouds with precipitation increase at the expense of low clouds with less 662

precipitation, and the congestus clouds occur more frequently in ascending regions. 663

However, the greater similarity of biases with observations between model versions 664

indicates a compensation between the atmospheric state and the parameterization changes 665

in the model’s climate simulation. 666

667
6. Summary  668

669
This paper uses tropical measurements of cloud fields from CloudSat and CALIPSO 670

to evaluate simulated cloud and precipitation statistics from the CAM3. Although several 671

prior studies assess model performance using CloudSat or CALIPSO data (Bodas-672

Salcedo et al. 2008; Chepfer et al. 2008; Marchand et al. 2009), this is the first study to 673

assess a model using both data streams, which is beneficial due to the different 674

sensitivities of the radar and lidar for hydrometeor detection (Mace et al. 2009). The 675
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merged CloudSat and CALIPSO dataset provides the most comprehensive description of 676

the vertical structure of hydrometeor fields currently possible on a global basis. It has the 677

potential to advance our understanding of cloud processes and improve model 678

evaluations. Observations are analyzed in terms of cloud regimes using a clustering 679

technique applied to tropical data for the period June to September 2006, so that model 680

simulations can be evaluated as a function of characteristic cloud type. Six cloud regimes 681

with distinctive cloud subgrid-scale patterns to the vertical profiles of signal strength are 682

identified, and the geographical distributions of the occurrence frequencies of these 683

principal cloud regimes illustrate the association with the large-scale atmospheric 684

circulation. 685

A satellite simulator package is applied to the model to aid quantitative evaluation of 686

model performance using the new data. The joint histograms of atmospheric pressure and 687

signal strength generated by the simulator package are used to assess model performance 688

under the clustering framework. Assigning model histograms to the observed cloud 689

regimes facilitates comparison in terms of both the occurrence frequency and properties 690

of cloud regimes.  691

     The comparison of the geographical distributions between model simulations and 692

observations shows that CAM3.1 overestimates the area coverage of high clouds 693

especially in the Tropical Western Pacific, east central Africa, and northern South 694

America, and underestimates the area coverage of low clouds in subsidence regions. 695

More insightful are the differences in the joint histograms of atmospheric pressure and 696

signal strength that are able to expose model deficiencies in the simulated vertical 697

structure of hydrometeor properties. It is found that cloud coverage of the two low cloud 698

regimes and congestus regimes are significantly lower than observed. Low- and mid-level 699
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clouds may precipitate too heavily. The biases in the joint histogram and occurrence 700

frequency for the deep convection with heavy precipitation regime suggest that the model 701

overestimates convective precipitation but underestimates stratiform precipitation. 702

Particularly striking is the model overestimate of the occurrence frequency of deep 703

convection and the complete absence of cirrus anvils. In general, the modeled clouds are 704

too reflective in all regimes, which is consistent with that seen by Bodas-Salcedo et al. 705

(2008) who used CloudSat data to evaluate clouds and precipitation in the Unified Model 706

of the United Kingdom Meteorological Office. Also, it is particularly prominent in the 707

fact that the model is unable to simulate hardly any clouds with radar reflectivity less 708

than -30 but still detectable by CALIPSO, and a similar result was found with the French 709

climate model (Chepfer et al. 2008). 710

   It has been reported that the CALIPSO Vertical Feature Mask version 2 used to create 711

the GEOPROF-LIDAR product used in this study has some error (D. Winker, personal 712

communication). The error is expected to cause an overestimate in the occurrence of 713

isolated low-level clouds on the order of 5-10% in the maritime trade cumulus regions 714

and have little effect elsewhere. This error will not explain the lack of model clouds in 715

the lidar-only bin of the two low cloud regimes. Thus while a future version of the data 716

may change the cloud coverage and/or RFO of the two low cloud regimes, there will be 717

less impact on the other four cloud regimes. For these other regimes, the occurrence 718

frequency at the lowest level for the lidar-only bin may decrease in Figure 3, but the RFO 719

of the regimes will likely not change. 720

To examine the impact of model parameterizations on the simulated clouds, we also 721

evaluate CAM 3.5. The cloud subgrid-scale patterns of CAM3.5 are similar to those from 722

CAM 3.1, but the geographical distributions of the RFO are significantly different. The 723
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new version of the model reduces deep convection and high clouds but increases 724

congestus and low clouds with precipitation. These changes are primarily due to 725

implementation of dilute plumes in the deep convection parameterization which leads to 726

greater detrainment in the middle troposphere and less detrainment in the upper 727

troposphere. 728

The cloud regimes are also sorted by the monthly mean vertical wind at 500 hPa to 729

show the relationship between tropical cloud systems and the large-scale environment 730

that influences the evolution of cloud systems. It is shown that, relative to CAM3.1, 731

CAM3.5 suppresses deep convection with heavy precipitation and generates more 732

congestus in ascending regions and low clouds with precipitation in subsidence regions. 733

However, deep convection is still too frequent in strongly ascending regions, and low 734

clouds with less precipitation are still too infrequent. 735

Although results from climate integrations of CAM show different geographical 736

distributions of the occurrence frequencies for the individual cloud regimes relative to 737

those of the forecasts, the changes from CAM3.1 to CAM3.5 are identical but smaller in 738

magnitude for all the regimes. The differences of simulated cloud statistics between 739

forecasts and climate integrations may imply that the feedback processes are partly 740

responsible for the climatological biases. However, the details about how the feedback 741

processes generate these differences will need more sensitivity studies. Our result is not 742

consistent with that in Williams and Brooks (2007), which found the cloud regimes are 743

similar for the forecasts and the climate integrations with the Met Office Unified 744

Forecast-Climate Model. The lack of differences in their case for cloud regimes between 745

forecasts and climate integrations may be partly due to the fact that the analysis used to 746

initialize their climate model is from a data-assimilation system with the same physical 747
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model. Furthermore, larger differences between clouds in the climate and forecast 748

integration of CAM3 may occur because differences between the tropical state of 749

CAM3’s climate and the NCEP analysis are larger. Additional investigation of the spin-750

up of model clouds and precipitation in CAM3 is warranted. 751

Some of the conclusions from this study echo those of previous studies such as the 752

overabundance of deep convection (Xie et al. 2004), the near absence of anvil cirrus 753

(Williams et al. 2005), the overestimate of convective precipitation (Dai 2006), and 754

overly reflective clouds (Zhang et al. 2005; Bodas-Salcedo et al. 2008). However, some 755

new perspectives are provided, including an underestimation of thin clouds that can only 756

detected by the lidar and an overestimation of precipitation frequency from CAM3.5. The 757

fact that the CPR can see precipitation allows one to diagnose errors in model-simulated 758

precipitation statistics together with cloud errors. One surprising result is that the CAM 759

has as much or greater amounts of congestus as observations. This contrasts with all 760

previous studies using ISCCP data which had concluded that large-scale models lack 761

congestus. A possible reconciliation of our results with the previous studies is that we 762

primarily use precipitation profiles in this study to detect congestus whereas the other 763

studies using ISCCP data rely on identification of congestus through the visible and 764

infrared cloud properties. Although the results from the CAM may not apply to other 765

climate models, it may be that models do produce congestus (middle level topped 766

precipitating convection) but that the cloud properties of the congestus regime are 767

seriously biased. Indeed, a preliminary comparison of ISCCP simulator results when the 768

CAM simulates congestus clouds (as identified by CloudSat) suggests that the model 769

cloud properties for the congestus regime are indeed biased when compared to MODIS 770

observations of visible optical thickness and highest cloud top pressure. 771
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This paper provides a possible methodology to use the merged dataset from the radar 772

and lidar observations to evaluate model performance. In the future, we will exploit the 773

synergy of the A-Train to deliver complementary measurements of the same 774

environmental phenomena and the collocated large-scale variables along the CloudSat 775

flight track, to further understand model deficiencies. For example, Clouds and the 776

Earth’s Radiant Energy System (CERES; Wielicki et al., 1996) radiative fluxes will be 777

used to describe the radiative characteristics of the individual regimes and address the 778

impact of the cloud regimes on the cloud radiative forcing at the top of atmosphere. With 779

the rapid evolution of the physical parameterizations in CAM, our future evaluation 780

efforts will focus on the next officially released version, CAM4. In order to explore the 781

physical reasons for the differences between model and observation, we also plan to 782

perform more sensitivity experiments on specific aspects of the cloud parameterizations 783

to identify future model improvements. 784
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 low clouds 
with less precip 

low clouds with 
precip 

thin cirrus congestus cirrus anvils deep convection 
with heavy 

precip 
Clear  

RFO TCC RFO TCC RFO TCC RFO TCC RFO TCC RFO TCC RFO
Observation 35% 0.63 18% 0.69 9% 0.84 9% 0.84 8% 0.90 13% 0.93 8%

CAM 3.1 25% 0.46 18% 0.45 5% 0.77 6% 0.60 1% 0.88 33% 0.91 12%
CAM 3.5 
undilute 

23% 0.43 19% 0.42 5% 0.70 6% 0.57 1% 0.84 33% 0.90 13%

CAM 3.5 22% 0.36 21% 0.32 3% 0.58 13% 0.44 1% 0.74 27% 0.85 13%

Table 1. The data distributions for observations, simulations from CAM3.1, CAM3.5 with undilute plume, and CAM3.5 in the six 
cloud clusters and clear-sky condition with TCC lower than 5%. The data listed are the relative frequency of occurrence (RFO, left 
column), and the total cloud coverage (TCC, right column). The numbers of elements are 54,828 and 913,536 for observations and 
model simulations, respectively. 
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Figure 1. A case from Tropical Western Pacific Ocean (2°N 140°E) on Jul 15, 2006 that 
illustrates the creation of the joint histogram of atmospheric pressure and signal strength 
for a subgrid-scale cloud pattern. (a) Radar reflectivity from CloudSat observations of 
200 adjacent profiles; (b) Hydrometeor mask by combining radar and lidar data; (c) The 
joint histogram of atmospheric pressure and signal strength for this sample. The shading 
indicates the relative frequency of occurrence (RFO) of clouds or precipitation at each 
bin of atmospheric pressure; The left column depicts the cloud fraction detected by lidar 
but missed by radar (‘lidar only’ clouds in panel b); The line with diamonds depicts the 
vertical profile of the normalized mean dBZ index for this histogram. 
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Figure 2. Comparison of the meridional-mean cloud occurrence frequency for the tropical 
region (23.5˚S-23.5˚N) during June-September 2006: (a) Observations from CloudSat 
and CALIPSO (b) Simulator output of the cloud simulations from CAM 3.1 day-2 
forecasts. 
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Figure 3. Joint histograms of atmospheric pressure and signal strength for the centroids of 
the six tropical clusters from the CloudSat and CALIPSO observations collected in June-
September 2006. These clusters are named by the primary cloud morphology. The RFO 
for each cluster is shown in brackets. 
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Figure 4. The time-averaged occurrence fraction of each CloudSat-CALIPSO cluster. The 
sum of the frequencies across clusters represents the frequency of cloudy patterns in a 
10˚-by-10˚ box. 
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Figure 5. Joint histograms of cluster centroids from CAM3.1 by assigning cloud 
simulations into observational clusters based on the minimum Euclidean distance. 
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Figure 6. The temporal-averaged occurrence fraction of each cluster from cloud 
simulations in CAM3.1 forecasts. 
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Figure 7. As in Fig. 5 but from CAM3.5. 
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Figure 8. As in Fig. 6 but from CAM3.5. 



49

Figure 9. The frequency of the occurrence for each cluster from CloudSat-CALIPSO 
observation as a function of large-scale dynamics defined by the monthly mean vertical 
velocity at 500hPa calculated using NCEP analysis data. The boundaries for each omega 
bin are determined such that each bin represents the equivalent occurrence frequency of 
vertical velocities. (a) The fraction of elements of a given cluster which occur in the 
given vertical velocity bin. For this measure, the sum of the frequencies in the eight 
vertical velocity bins for each cluster is 1. The red line indicates the occurrence frequency 
if there were no association of cloud clusters with the 500hPa vertical velocity. (b) The 
fraction of cloudy elements of a given vertical velocity bin which belong to a given 
cluster. For this measure, the sum of the frequencies of the six clusters in each vertical 
velocity bin is 1. The frequency is labeled beside the bars hitting the top limit. 



50

Figure 10. The frequency difference of the six clusters in each vertical velocity bin for the 
fraction of elements of a given vertical velocity bin which belong to a given cluster. This 
measure is the same as was displayed in Figure 9(b): (a) The difference between 
observations and CAM3.1forecasts, (b) the difference between observations and 
CAM3.5, and (c) the difference between CAM3.5 and CAM3.1. The frequency 
difference is labeled beside the bars hitting the bottom limit. 
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Figure 11. As in Fig. 10 but for CAM3 climate integrations. 


